个人简介
女,1971年11月生,四川省邛崃人,教授,博士生导师。1994年本科毕业于原重庆建筑大学,2007年获重庆大学工学博士学位。长期从事固体力学弹性理论及结构非线性问题研究,主讲弹性力学课等。主持并参与各类科研项目10余项;获国家发明专利授权20余项;发表SCI检索的学术论文50余篇。
研究方向
1. 结构非线性问题
2. 拉压不同模量弹性理论
3. 基于反变形的空间结构理论
4. 建筑薄膜结构
5. 施工力学及施工组织
主讲课程
弹性力学等
学术兼职
力学学会会员
主要成果
承担课题:
1. 主持国家自然科学基金面上项目:多参数摄动法及其在功能梯度压电材料结构多场耦合中的应用(编号:11572061),2016-2019
2. 主研国家自然科学基金面上项目:一种具有最佳结构形态的弹性共轭壳体理论及实验研究。(编号:11772072),2018-2021
3. 主研国家自然科学基金面上项目:圆形和矩形薄膜结构在冲击荷载作用下的动力响应研究(编号:51178485),2012-2015
4. 主持重庆市基础与前沿研究计划项目:拉压不同模量柔性薄层结构变形问题研究(编号:cstc2013jcyjA30012),2013-2016
典型成果介绍:
1. 基于不同模量弹性理论的结构非线性力学行为研究
运用经典薄板小挠度弯曲理论中的Kirchhoff假设,建立了考虑材料双模量效应的拉压分区简化力学模型,进而建立了求解梁板大变形问题的控制方程。项目研究成果发表SCI检索境外论文7篇,获国家发明专利授权4项。
2. 结构非线性问题多参数摄动法研究
针对梁板壳结构的材料非线性问题和几何非线性问题以及多场耦合问题,在传统的单参数摄动方法基础上,创新性提出多参数摄动方法,为多重非线性问题求解提供新的解析手段。项目研究成果已在国际知名应用数学类期刊上发表SCI检索论文3篇。
3. 基于反变形的穹顶结构理论研究
基于横向载荷作用下周边夹紧的薄板问题解析研究,建立薄板变形后的精细挠曲面方程,采用变形后薄板挠曲面的镜像曲面,作为穹顶壳体的初始结构形状,再将这一穹顶壳体,等效为一个由径向肋和环向肋刚性连结的空间网架体系,从而实现了基于反变形的穹顶壳、以及空间钢网架穹顶结构体系。这种基于反变形理论而设计的穹顶结构,较之于目前的结构,具有“发挥了压缩载荷承载能力”的优势,即,穹顶结构中的压缩应力,正如薄板中的拉伸应力一样,将成为占主导地位的结构响应。该项目目前仅完成了穹顶壳体的理论研究,发表SCI检索学术论文3篇,申报国家发明专利6项。
代表论文:
1. Application of multi-parameter perturbation method to functionally-graded, thin, circular piezoelectric plates, Mathematics, 2020, 8(3), 342.
2. Application of biparametric perturbation method to functionally graded thin plates with different moduli in tension and compression. ZAMM-Journal of Applied Mathematics and Mechanics, 2019, 99(7): e201800213.
3. Bending analysis of functionally graded curved beams with different properties in tension and compression. Archive of Applied Mechanics, 2019, 89(9): 1973–1994.
4. An electroelastic solution for functionally graded piezoelectric material beams with different moduli in tension and compression. Journal of Intelligent Material Systems and Structures, 2018,29: 1649-1669.
5. Application of perturbation idea to well-known Hencky problem: A perturbation solution without small-rotation-angle assumption. Mechanics Research Communications, 2017,83: 32-46.
6. A biparametric perturbation method for the Foppl-von Karman equations of bimodular thin plates. Journal of Mathematical Analysis and Applications, 2017, 455: 1688-1705.
7. Simplified theory and analytical solution for functionally graded thin plates with different moduli in tension and compression. Mechanics Research Communications, 2016,74: 72-80.
8. Application of a biparametric perturbation method to large-deflection circular plate problems with a bimodular effect under combined loads. Journal of Mathematical Analysis and Applications, 2014, 420(1): 48-65.
9. Nonlinear large deflection problems of beams with gradient: A biparametric perturbation method. Applied Mathematics and Computation, 2013, 219(14): 7493-7513.
10. General perturbation solution of large-deflection circular plate with different moduli in tension and compression under various edge conditions. International Journal of Non-linear Mechanics, 2013, 55: 110-119.
11. Large-deflection axisymmetric deformation of circular clamped plates with different moduli in tension and compression. International Journal of Mechanical Sciences, 2012, 62(1): 103-110.
12. Application of the Kirchhoff hypothesis to bending thin plates with different moduli in tension and compression. Journal of Mechanics of Materials and Structures, 2010, 5(5): 755-769
13. Convergence analysis of a finite element method based on different moduli in tension and compression. International Journal of Solids and Structures, 2009, 46(20): 3734-3740.
获奖情况
指导2010级研究生陈强获2014年度重庆大学和重庆市的优秀硕士学位论文奖;
指导2011级研究生曹亮获2015年度重庆大学和重庆市的优秀硕士学位论文奖;
指导2013级研究生裴新新获2017年度重庆大学和重庆市的优秀硕士学位论文奖;
指导2016级研究生李杨辉获2020年度重庆大学的优秀硕士学位论文奖。
研究生培养
已毕业硕士研究生10余名,每年招收博士生1-2名,每年招收硕士生3名。
联系方式
E-mail: hexiaoting@cqu.edu.cn